stellar evolution: Old Stars and Death
Old Stars and Death
As the helium content of the star's core builds up, the core contracts and releases gravitational energy, which heats up the core and actually increases the rates of the nuclear reactions. Thus the rate of hydrogen consumption rises as the hydrogen is used up. To accommodate the higher luminosity resulting from the increased reaction rates, the envelope must expand to allow an increased flow of energy to the surface of the star. As the outer regions of the star expand, they cool.
The star now consists of a dense, helium rich core surrounded by a huge, tenuous envelope of relatively cool gas; the star has become a red giant. Eventually, the contracting stellar core will reach temperatures in excess of 100 million degrees Kelvin. At this point, helium burning sets in. With the ignition of that process, the expansion of the envelope is halted and then reversed; the star retreats from the red giant phase, shrinking in size and luminosity, and reapproaches the main sequence. The exact course of evolution is uncertain, but as the star recrosses the main sequence, it will probably become unstable. The star may eject some of its mass or become an exploding nova or supernova star; at the very least, it will become a pulsating variable star, possibly a Cepheid variable.
In the later stages of evolution, further contraction and elevation of temperature open up new thermonuclear reactions. It is believed that the heavier elements in the universe, up to iron, were synthesized in the interiors of stars by a variety of intricate nuclear reactions, many involving neutron absorption. Elements heavier than iron are made in supernova explosions. As a result of the nuclear reactions, the chemical composition of the late-stage star becomes highly inhomogeneous; its structure is fractionated into a number of concentric shells consisting of different elements around an iron core.
The final outcome of stellar evolution depends critically on the remaining mass of the old star. The vast majority of stars do not develop iron cores. If the mass is not greater than the Chandrasekhar mass limit (1.5 times the sun's mass), the star will become a white dwarf, glowing feebly for billions of years by radiating away its remaining heat energy until it becomes a black dwarf, a totally dead star. If the star is too massive to become a stable white dwarf, contraction will continue until the temperature reaches about 5 billion degrees Kelvin. At this temperature the iron nuclei in the core begin to absorb electrons; this creates neutron-rich isotopes and simultaneously deprives the core of its pressure. With further collapse and increase in density, the core becomes a special kind of rigid solid. At still higher density, the solid “evaporates” as the nuclei break up into free neutrons. The resulting neutron fluid forms the core of a new astrophysical body, called a neutron star, of which pulsars are examples. If the stellar mass is too great to be stable even as a neutron star, complete gravitational collapse will ensue and a black hole will form.
Sections in this article:
- Introduction
- Validating the Theory of Stellar Evolution
- Old Stars and Death
- Mature Stars and the Main Sequence
- Contraction of the Protostar
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General