stellar evolution: Contraction of the Protostar

Contraction of the Protostar

The initial phase of stellar evolution is contraction of the protostar from the interstellar gas, which consists of mostly hydrogen, some helium, and traces of heavier elements. In this stage, which typically lasts millions of years, half the gravitational potential energy released by the collapsing protostar is radiated away and half goes into increasing the temperature of the forming star. Eventually the temperature becomes high enough for thermonuclear reactions to begin; if the mass of the protostar is too small to raise the temperature to the ignition point for the thermonuclear reaction, the result is a brown dwarf, or “failed star.” In these thermonuclear reactions, loosely called “hydrogen burning,” four hydrogen nuclei are fused to form a helium nucleus (see nucleosynthesis). This point in time is conventionally called age zero.

Many protostar contractions have been observed in isolated gas clouds; that is, where one cloud contracted to form one star. However, in 1995, the first example of a star-forming region was found in the Eagle Nebula, some 7,000 light-years from the earth. In this region, stars are being formed at the tips of long, fingerlike columns stretching from a huge cloud of interstellar gas and dust; the columns are being eroded by radiation (a process called photoevaporation) from stars in the vicinity, leaving scattered knots of matter that contract into stars.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Astronomy: General