conservation laws: Conservation of Natural Symmetries
Conservation of Natural Symmetries
One very important discovery has been the link between conservation laws and basic symmetries in nature. For example, empty space possesses the symmetries that it is the same at every location (homogeneity) and in every direction (isotropy); these symmetries in turn lead to the invariance principles that the laws of physics should be the same regardless of changes of position or of orientation in space. The first invariance principle implies the law of conservation of linear momentum, while the second implies conservation of angular momentum. The symmetry known as the homogeneity of time leads to the invariance principle that the laws of physics remain the same at all times, which in turn implies the law of conservation of energy. The symmetries and invariance principles underlying the other conservation laws are more complex, and some are not yet understood.
Three special conservation laws have been defined with respect to symmetries and invariance principles associated with inversion or reversal of space, time, and charge. Space inversion yields a mirror-image world where the “handedness” of particles and processes is reversed; the conserved quantity corresponding to this symmetry is called space parity, or simply parity,
Sections in this article:
- Introduction
- Conservation of Natural Symmetries
- Conservation of Elementary Particle Properties
- Conservation of Classical Processes
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Physics