The Nature of Volcanoes

Updated March 17, 2022 | Infoplease Staff

Volcanoes are built by the accumulation of their own eruptive products—lava, bombs (crusted over ash flows), and tephra (airborne ash and dust). A volcano is most commonly a conical hill or mountain built around a vent that connects with reservoirs of molten rock below the surface of Earth. The term volcano also refers to the opening or vent through which molten rock and gases are expelled.

Driven by buoyancy and gas pressure, the molten rock, which is lighter than the surrounding solid rock, forces its way upward and may ultimately break though zones of weaknesses in Earth's crust. If so, an eruption begins, and the molten rock may pour from the vent as nonexplosive lava flows, or it may shoot violently into the air as dense clouds of lava fragments. Larger fragments fall back around the vent, and accumulations of fall-back fragments may move downslope as ash flows under the force of gravity. Some of the finer ejected materials may be carried by the wind and fall to the ground many miles away. The finest ash particles may be injected miles into the atmosphere and carried many times around the world by stratospheric winds before settling out.

Molten rock below the surface of Earth that rises in volcanic vents is known as magma, but after it erupts from a volcano it is called lava. Originating many tens of miles beneath the ground, the ascending magma commonly contains some crystals, fragments of surrounding (unmelted) rocks, and dissolved gases, but it is primarily a liquid composed of oxygen, silicon, aluminum, iron, magnesium, calcium, sodium, potassium, titanium, and manganese. Upon cooling, the liquid magma solidifies to form an igneous or magmatic rock.

Lava is red-hot when it pours or blasts out of a vent but soon changes to dark red, gray, black, or some other color as it cools and solidifies. Very hot, gas-rich lava containing abundant iron and magnesium is fluid and flows like hot tar, whereas cooler, gas-poor lava high in silicon, sodium, and potassium flows sluggishly, like thick honey, or in other cases, like pasty, blocky masses.

All magmas contain dissolved gases, and as they rise to the surface to erupt, the confining pressures are reduced and the dissolved gases are liberated either quietly or explosively. If the lava is a thin fluid (not viscous), the gases may escape easily. But if the lava is thick and pasty (highly viscous), the gases will not move freely but will build up tremendous pressure and ultimately escape with explosive violence, throwing out great masses of solid rock as well as lava, dust, and ashes.

The violent separation of gas from lava may produce rock froth called pumice. Some of this froth is so light—because of the many gas bubbles—that it floats on water.


 
 
.com/ipa/0/7/6/3/4/5/A0763456.html
Sources +