rocket, in aeronautics: Development of Rockets

Development of Rockets

The invention of the rocket is generally ascribed to the Chinese, who as early as a.d. 1000 stuffed gunpowder into sections of bamboo tubing to make military weapons of considerable effectiveness. The 13th-century English monk Roger Bacon introduced to Europe an improved form of gunpowder, which enabled rockets to become incendiary projectiles with a relatively long range. Rockets subsequently became a common if unreliable weapon. Major progress in design resulted from the work of William Congreve, an English artillery expert, who built a 20-lb (9-kg) rocket capable of traveling up to 2 mi (3 km). In the late 19th cent., the Austrian physicist Ernst Mach gave serious theoretical consideration to supersonic speeds and predicted the shock wave that causes sonic boom.

The astronautical use of rockets was cogently argued in the beginning of the 20th cent. by the Russian Konstantin E. Tsiolkovsky, who is sometimes called the “father of astronautics.” He pointed out that a rocket can operate in a vacuum and suggested that multistage liquid-fuel rockets could escape the earth's gravitation. The greatest name in American rocketry is Robert H. Goddard, whose pamphlet A Method for Reaching Extreme Altitudes anticipated nearly all modern developments. Goddard launched the first liquid-fuel rocket in 1926 and demonstrated that rockets could be used to carry scientific apparatus into the upper atmosphere. His work found its most receptive audience in Germany. During World War II, a German team under Wernher von Braun developed the V-2 rocket, which was the first long-range guided missile. The V-2 had a range greater than 200 mi (322 km) and reached velocities of 3,500 mi (5,600 km) per hr.

After the war, rocket research in the United States and the Soviet Union intensified, leading to the development first of intercontinental ballistic missiles and then of modern spacecraft. Important U.S. rockets have included the Redstone, Jupiter, Atlas, Titan, Agena, Centaur, and Saturn carriers. Saturn V, the largest rocket ever assembled, developed 7.5 million lb (3.4 million kg) of thrust. A three-stage rocket, it stood 300 ft (91 m) high exclusive of payload and with the Apollo delivered a payload of 44 tons to the moon. The space shuttle, or STS (1981–2011), had main engines that used liquid propellant and boosters that were solid-fuel rockets.

Rockets presently being used to launch manned and unmanned missions into space include the Brazilian VSV-30; numerous Chinese Long March rockets; the European Space Agency's Ariane 5 series and Vega; the Indian PSLV (Polar Satellite Launch Vehicle), GSLV (Geosynchronous Satellite Launch Vehicle), and GSLV Mark-III; the Israeli Shavit 2; the Russian Soyuz U, FG, and 2 and Proton K and M; the Japanese H-IIA, H-IIB, and Epsilon; the South Korean–Russian KSLV-1; United Launch Alliance's Delta IV Heavy and Atlas V; Rocket Lab's Electron; Space Exploration Technologies' (SpaceX) Falcon 9 and Falcon Heavy; Northrup Grumman's Antares and Minotaur I, IV, V, and C. Northrup Grumman's Pegasus and Virgin Orbit's LauncherOne are air-launched rockets; they are carried to a high altitude by a plane, then released and launched. In 2015 the Falcon 9's main stage returned by a controlled vertical landing. The Ares I, a two-stage NASA rocket designed to replace the STS as a launch vehicle on manned missions, underwent its first test flight in 2009. Blue Origin's New Shepard, consisting of a capsule and a reusable rocket booster, which also is designed to land vertically under power, had its first successful test in 2015.

See also space science.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Space Exploration