sun, in astronomy: Production of Solar Energy
Production of Solar Energy
The vast and continual production of solar energy cannot be attributed merely to combustion, to the gradual cooling of a hot body, to the fall of meteorites into the sun, or to gradual shrinkage with transformation of potential energy into heat (a theory proposed by Helmholtz). The theory of relativity with its implication of the equivalence of mass and energy led to the assumption that energy stored in the atoms constituting the sun's gases is constantly being released by conversion of some of the masses of the atom's nuclei during nuclear transmutations (see nuclear energy). H. A. Bethe proposed a cycle of nuclear reactions known as the carbon cycle, or CNO bi-cycle, to account for the nuclear changes. In this cycle carbon acts much as a catalyst, while hydrogen is transformed by a series of reactions into helium and large amounts of high-energy gamma radiation are released. It is now thought that the so-called proton-proton process is a more important energy source; this process begins with the collision of two protons and ends with the production of helium, while gamma radiation is released throughout.
See nucleosynthesis; stellar evolution.
Sections in this article:
- Introduction
- Importance to Terrestrial Life
- The Study of the Sun
- Production of Solar Energy
- General Characteristics of the Sun
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General