quantum theory: Relationship of Energy and Matter
Relationship of Energy and Matter
According to the older theories of classical physics, energy is treated solely as a continuous phenomenon, while matter is assumed to occupy a very specific region of space and to move in a continuous manner. According to the quantum theory, energy is held to be emitted and absorbed in tiny, discrete amounts. An individual bundle or packet of energy, called a quantum (pl. quanta), thus behaves in some situations much like particles of matter; particles are found to exhibit certain wavelike properties when in motion and are no longer viewed as localized in a given region but rather as spread out to some degree.
For example, the light or other radiation given off or absorbed by an atom has only certain frequencies (or wavelengths), as can be seen from the line spectrum associated with the chemical element represented by that atom. The quantum theory shows that those frequencies correspond to definite energies of the light quanta, or photons, and result from the fact that the electrons of the atom can have only certain allowed energy values, or levels; when an electron changes from one allowed level to another, a quantum of energy is emitted or absorbed whose frequency is directly proportional to the energy difference between the two levels.
Sections in this article:
- Introduction
- Quantum Mechanics and Later Developments
- Early Developments
- Dual Nature of Waves and Particles
- Relationship of Energy and Matter
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Physics