physics: Relativity and Quantum Mechanics
Relativity and Quantum Mechanics
In 1905, Albert Einstein showed that the result of the Michelson-Morley experiment could be interpreted by assuming the equivalence of all inertial (unaccelerated) frames of reference and the constancy of the speed of light in all frames; Einstein's special theory of relativity eliminated the need for the ether and implied, among other things, that mass and energy are equivalent and that the speed of light is the limiting speed for all bodies having mass. Hermann Minkowski provided (1908) a mathematical formulation of the theory in which space and time were united in a four-dimensional geometry of space-time. Einstein extended his theory to accelerated frames of reference in his general theory (1916), showing the connection between acceleration and gravitation. Newton's mechanics was interpreted as a special case of Einstein's, valid as an approximation for small speeds compared to that of light.
Although relativity resolved the electromagnetic phenomena conflict demonstrated by Michelson and Morley, a second theoretical problem was the explanation of the distribution of electromagnetic radiation emitted by a blackbody; experiment showed that at shorter wavelengths, toward the ultraviolet end of the spectrum, the energy approached zero, but classical theory predicted it should become infinite. This glaring discrepancy, known as the ultraviolet catastrophe, was solved by Max Planck's quantum theory (1900). In 1905, Einstein used the quantum theory to explain the photoelectric effect, and in 1913 Niels Bohr again used it to explain the stability of Rutherford's nuclear atom. In the 1920s the theory was extensively developed by Louis de Broglie, Werner Heisenberg, Wolfgang Pauli, Erwin Schrödinger, P. A. M. Dirac, and others; the new quantum mechanics became an indispensable tool in the investigation and explanation of phenomena at the atomic level.
Sections in this article:
- Introduction
- Particles, Energy, and Contemporary Physics
- Relativity and Quantum Mechanics
- Birth of Modern Physics
- Advances in Electricity, Magnetism, and Thermodynamics
- Development of Mechanics and Thermodynamics
- The Scientific Revolution
- Preservation of Learning
- Greek Contributions
- Modern Physics
- Classical Physics
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Physics