sulfuric acid: Concentrated Sulfuric Acid
Concentrated Sulfuric Acid
When heated, the pure 100% acid loses sulfur trioxide gas, SO3, until a constant-boiling solution, or azeotrope, containing about 98.5% H2SO4 is formed at 337℃. Concentrated sulfuric acid is a weak acid (see acids and bases) and a poor electrolyte because relatively little of it is dissociated into ions at room temperature. When cold it does not react readily with such common metals as iron or copper. When hot it is an oxidizing agent, the sulfur in it being reduced; sulfur dioxide gas may be released. Hot concentrated sulfuric acid reacts with most metals and with several nonmetals, e.g., sulfur and carbon. Because the concentrated acid has a fairly high boiling point, it can be used to release more volatile acids from their salts, e.g., when sodium chloride (NaCl), or common salt, is heated with concentrated sulfuric acid, hydrogen chloride gas, HCl, is evolved.
Concentrated sulfuric acid has a very strong affinity for water. It is sometimes used as a drying agent and can be used to dehydrate (chemically remove water from) many compounds, e.g., carbohydrates. It reacts with the sugar sucrose, C12H22O11, removing eleven molecules of water, H2O, from each molecule of sucrose and leaving a brittle spongy black mass of carbon and diluted sulfuric acid. The acid reacts similarly with skin, cellulose, and other plant and animal matter.
When the concentrated acid mixes with water, large amounts of heat are released; enough heat can be released at once to boil the water and spatter the acid. To dilute the acid, the acid should be added slowly to cold water with constant stirring to limit the buildup of heat. Sulfuric acid reacts with water to form hydrates with distinct properties.
Sections in this article:
- Introduction
- History of Sulfuric Acid
- Uses of Sulfuric Acid
- Contact Process
- Lean Chamber Process
- Production of Sulfuric Acid
- Dilute Sulfuric Acid
- Concentrated Sulfuric Acid
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Compounds and Elements