fullerene
The most common and most stable fullerene is buckminsterfullerene, a spheroidal molecule, resembling a soccer ball, consisting of 60 carbon atoms. Buckminsterfullerene is the most abundant cluster of carbon atoms found in carbon soot. It is also the smallest carbon molecule whose pentagonal faces are isolated from each other. Other fullerenes that have been produced in macroscopic amounts have 70, 76, 84, 90, and 96 carbon atoms, and much larger fullerenes have been found, such as those that contain 180, 190, 240, and 540 carbon atoms.
Fullerenes were first identified in 1985 as products of experiments in which graphite was vaporized using a laser, work for which R. F. Curl, Jr., R. E. Smally, and H. W. Kroto shared the 1996 Nobel Prize in Chemistry. Fullerenes have since been discovered in nature as a result of lightning strikes, in the residue produced by carbon arc lamps, in interstellar dust, and in meteorites.
Fullerene chemistry involves substituting metal atoms for one or more carbon atoms in the molecule to produce compounds called
See M. S. Dresselhaus et al.,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Compounds and Elements