isomer: Stereoisomers
Stereoisomers
Stereoisomerism occurs when two or more molecules have the same basic arrangement of atoms in their molecules but differ in the way the atoms are arranged in space. There are two types of stereoisomerism. The first type, geometric isomerism, may occur when a compound contains a double bond or some other feature that gives the molecule a certain amount of structural rigidity. Geometric isomers differ in physical properties such as melting point and boiling point. For example, there are two geometric isomers of 2-butene, CH3CH=CHCH3:
The second type of stereoisomerism is optical isomerism. When plane-polarized light is passed through an optical isomer it is rotated into a different plane of polarization. Optical isomers, also know as chiral molecules or enantiomers, exhibit this optical activity in varying degrees. Optical isomers of a given compound are often identical in all physical properties except the direction in which they rotate light. The molecules of optical isomers are asymmetrical. The simplest optical isomers have a single “asymmetrical carbon atom” in their molecules. An asymmetrical carbon atom has four different atoms or radicals bonded to it, arranged approximately at the corners of a tetrahedron centered on the carbon atom. For example, there are two optical isomers of lactic acid:
When there is more than one asymmetrical carbon atom, there may be more than two optical isomers. For example, tartaric acid has two asymmetrical carbon atoms and three optical isomers:
Stereoisomers are important in metabolism; in many cases only one of several isomeric forms of a compound can take part in biochemical reactions. For example, there are 16 stereoisomers of a simple sugar whose molecular formula is C6H12O4. Of these, only
Sections in this article:
- Introduction
- Stereoisomers
- Structural Isomers
- General Characteristics
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Chemistry: General