mutation: Point Mutations
Point Mutations
Each gene is made up of a long sequence of substances called nucleotides; these nucleotides, taken in series of three at a time, specify each amino acid subunit of a protein (see nucleic acid). In a frameshift mutation, a nucleotide is added or deleted to the sequence and the decoding of the entire gene sequence will be radically altered and the amino acid sequence of the protein produced will also be very different. Often the resulting protein is totally ineffective. If one nucleotide substitutes for another in the sequence only one amino acid of the protein will be different, but the effect can be quite dramatic. For example, the inherited sickle cell disease is the result of a mutation that results in the substitution of the amino acid valine for glutamic acid in hemoglobin.
Because proteins called enzymes control most cell activities, a mutation affecting an enzyme can result in alteration of other cell components. A single gene mutation may have many effects if the enzyme it controls is involved in several metabolic processes. Occasionally a mutation can be offset by either another mutation on the same gene or on another gene that suppresses the effect of the first. Certain genes are responsible for producing enzymes that can repair some mutations. While this process is not fully understood, it is believed that if these genes themselves mutate, the result can be a higher mutation rate of all genes in an organism.
Sections in this article:
- Introduction
- Mutation and Evolution
- Induced Mutations
- Point Mutations
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Genetics and Genetic Engineering