drug resistance
The number of drug-resistant bacterial strains has increased in part because of the indiscriminate use of antibiotics, which have sometimes been overprescribed. Such misuse speeds the process by destroying bacteria that would compete with resistant strains. In addition, patients sometimes stop treatment when they start to feel better, leaving a residual population of bacteria that is likely to be more resistant to drug treatment. Another source of resistance is the routine use of antibiotics in animal feed to enhance growth, a practice that has led to resistant strains of
Resistance is due to random genetic mutations in the bacterial cell that alter its sensitivity to a single drug or to chemically similar drugs through a variety of mechanisms. Many bacteria can transfer their resistance to other bacteria of the same or different species. Resistance has occurred in common infectious bacteria such as pneumococcus (a cause of pneumonia, meningitis, and childhood ear infections) and enterococcus (a cause of wound infections). It has also occurred in such diseases as malaria, tuberculosis, and gonorrhea. Concerns are increasing as strains develop resistance to multiple drugs, including even the most powerful antibiotics (e.g., vancomycin). Although drug companies are again concentrating on antibiotic research, seeking new antibiotics and attempting to develop chemically altered derivatives of existing ones that can block bacterial resistance, such research does not necessarily proceed swiftly and the testing required to ensure drug safety also slows the introduction of new antibiotics. Many infectious-disease experts have urged that doctors consider the public health risk before prescribing antibiotics and that the government regulate the use of antibiotics in agriculture. Beginning in 2017, the Food and Drug Administration ended over-the-counter agricultural use of antimicrobial drugs deemed medically important; it also has moved to phase out voluntarily the use of such drugs for enhancing livestock growth.
See S. Levy,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Pathology