immunity: B Lymphocytes
B Lymphocytes
The presence of antigens in contact with receptor sites on the surface of a B lymphocyte stimulates the lymphocyte to divide and become a clone (a line of descendant cells), with each cell of the clone specific for the same antigen. Some cells of the clone, called plasma cells, secrete large quantities of antibody; others, called memory cells, enter a resting state, remaining prepared to respond to any later invasions by the same antigen. Antibody secretion by lymphocytes can be stimulated or suppressed by such variables as the concentration of antigens, the way the antigen fits the lymphocyte's receptor regions, the age of the lymphocyte, and the effect of other lymphocytes.
According to the modified clonal selection theory originally postulated by the Australian immunologist Sir Macfarlane Burnet (for which he was awarded the 1960 Nobel Prize for Physiology or Medicine), a lymphocyte is potentially able to secrete one particular, specific humoral, or free-circulating, antibody molecule. It is believed that early in life lymphocytes are formed to recognize thousands of different antigens, including a group of autoimmune lymphocytes, i.e., cells recognizing antigens of the organism's own body. The immune system is self-tolerant; i.e., it does not normally attack molecules and cells of the organism's own body, because those lymphocytes that are autoimmune are inactivated or destroyed early in life, and the cells that remain, the majority, recognize only foreign antigens. Burnet's theory was confirmed with the development of monoclonal antibodies.
Sections in this article:
- Introduction
- Undesirable Immune Responses and Conditions
- Active and Passive Immunity
- T Lymphocytes
- Antibodies
- B Lymphocytes
- The Immune Response
- Nonsusceptibility
- Interferons
- Inflammatory Response
- Nonspecific Defenses
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Anatomy and Physiology