brain: Anatomy and Function
Anatomy and Function
Occupying the skull cavity (cranium), the adult human brain normally weighs from 2
By means of electrochemical impulses the brain directly controls conscious or voluntary behavior, such as walking and thinking. It also monitors, through feedback circuitry, most involuntary behavior—connections with the autonomic nervous system enable the brain to adjust heartbeat, blood pressure, fluid balance, posture, and other functions—and influences automatic activities of the internal organs. There are no pain receptors in brain tissue. A headache is felt because of sensory impulses coming chiefly from the meninges or scalp.
Anatomically the brain has three major parts, the hindbrain (including the cerebellum and the brain stem), the midbrain, and the forebrain (including the diencephalon and the cerebrum). Every brain area has an associated function, although many functions may involve a number of different areas. The cerebellum coordinates muscular movements and, along with the midbrain, monitors posture. The brain stem, which incorporates the medulla and the pons, monitors involuntary activities such as breathing and vomiting.
The thalamus, which forms the major part of the diencephalon, receives incoming sensory impulses and routes them to the appropriate higher centers. The hypothalamus, occupying the rest of the diencephalon, regulates heartbeat, body temperature, and fluid balance. Above the thalamus extends the corpus callosum, a neuron-rich membrane connecting the two hemispheres of the cerebrum.
The cerebrum, occupying the topmost portion of the skull, is by far the largest sector of the brain. Split vertically into left and right hemispheres, it appears deeply fissured and grooved. Its upper surface, the cerebral cortex, contains most of the master controls of the body. In the cortex ultimate analysis of sensory data occurs, and motor impulses originate that initiate, reinforce, or inhibit the entire spectrum of muscle and gland activity. The parts of the cerebrum intercommunicate through association tracts consisting of connector neurons. Association neurons account for approximately half of the total number of nerve cells in the brain. The tracts are believed to be involved with reasoning, learning, and memory. The left half of the cerebrum controls the right side of the body; the right half controls the left side.
Other important parts of the brain include the pituitary gland, the basal ganglia, and the reticular activating system (RAS). The pituitary participates in growth regulation. The basal ganglia, located just above the diencephalon in each cerebral hemisphere, handle coordination and habitual but acquired skills like chewing and playing the piano. The RAS forms a special system of nerve cells linking the medulla, pons, midbrain, and cerebral cortex. The RAS functions as a sentry. In a noisy crowd, for example, the RAS alerts a person when a friend speaks and enables that person to ignore other sounds.
Nerve fibers in the brain are sheathed in a near-white substance called myelin and form the white matter of the brain. Nerve cell bodies, which are not covered by myelin sheaths, form the gray matter. The billions of nerve cells in the brain are structurally supported by the hairlike filaments of glial cells. Smaller than nerve cells and ten times as numerous, the glia account for an estimated half of the brain's weight. Cranial blood vessels in the brain have certain selective permeability characteristics that largely constitute the “blood-brain barrier.” The entire brain is enveloped in three protective sheets known as the meninges, continuations of the membranes that wrap the spinal cord. The two inner sheets enclose a shock-absorbing cushion of cerebrospinal fluid.
Sections in this article:
- Introduction
- Research
- Neural Pathways
- Anatomy and Function
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Anatomy and Physiology