aging
Biologists have advanced a variety of theories to explain aging, but most of them agree that this process is largely determined by genes. This view is suggested by the great range of lifespans among different animal species—from a few days in the fruit fly to more than 100 years in some tortoises. Scientists have recently learned how to double the lifespans of such laboratory organisms as roundworms and fruit flies through genetic manipulation, and mutant genes in mice have been observed to have a comparable effect in postponing aging.
At the cellular level, an important recent finding has been that the lifespans of cells in the human body are determined by strings of DNA (genetic material) called telomeres, which are located at the ends of the chromosomes. Each time a cell divides, the telomere becomes shorter; the senescence and death of the cell is triggered when the telomere is reduced to a certain critical length. Telomerase, an enzyme that can intervene in this process, is being closely studied in relation to cancer as well as aging.
Environmental factors have been observed to affect aging as well. Scientists have discovered that they can significantly postpone aging in mice by providing them with very low-calorie diets, and recent studies of rhesus monkeys on low-calorie diets appear to be having the same results. It is believed that these diets slow the aging process by lowering the rate at which tissue-damaging substances called free radicals are produced in the body. One aim of these studies is the development of antioxidant drugs that could slow the aging process in humans by protecting against free radicals. The use of testosterone, melatonin, human growth hormone, and other hormones as “anti-aging” treatments is medically unproved and potentially dangerous, as the hormones can have damaging side effects.
See L. Hayflick,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Anatomy and Physiology