nuclear reactor: Fission Reactors
Fission Reactors
A fission reactor consists basically of a mass of fissionable material usually encased in shielding and provided with devices to regulate the rate of fission and an exchange system to extract the heat energy produced. A reactor is so constructed that fission of atomic nuclei produces a self-sustaining nuclear chain reaction, in which the neutrons produced are able to split other nuclei. A chain reaction can be produced in a reactor by using uranium or plutonium in which the concentration of fissionable isotopes has been artificially increased. Even though the neutrons move at high velocities, the enriched fissionable isotope captures enough neutrons to make possible a self-sustaining chain reaction. In this type of reactor the neutrons carrying on the chain reaction are fast neutrons.
A chain reaction can also be accomplished in a reactor by employing a substance called a moderator to retard the neutrons so that they may be more easily captured by the fissionable atoms. The neutrons carrying on the chain reaction in this type of reactor are slow (or thermal) neutrons. Substances that can be used as moderators include graphite, beryllium, and heavy water (deuterium oxide). The moderator surrounds or is mixed with the fissionable fuel elements in the core of the reactor.
Sections in this article:
- Introduction
- Fusion Reactors
- Production of Heat and Nuclear Materials
- Types of Fission Reactors
- Fission Reactors
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Physics