gene

gene, the structural unit of inheritance in living organisms. A gene is, in essence, a segment of DNA that has a particular purpose, i.e., that codes for (contains the chemical information necessary for the creation of) a specific enzyme or other protein. Each gene provides a blueprint for the synthesis (via RNA) of a protein and specifies when the protein is to be made (see nucleic acid). There are also other segments of DNA that make strands of RNA that do not synthesize a protein but instead have other functions within the cell; these segments are known as RNA-producing, or noncoding, genes. The strands of DNA on which the genes occur are organized into chromosomes. The nucleus of each eukaryotic (nucleated) cell has a complete set of chromosomes and therefore a complete set of genes. Genes govern both the structure and metabolic functions of the cells, and thus of the entire organism and, when located in reproductive cells, they pass their information to the next generation.

Chemically, each gene consists of a specific sequence of DNA building blocks called nucleotides. Each nucleotide is composed of three subunits: a nitrogen-containing compound, a sugar, and phosphoric acid. Genes may vary in their precise makeup from person to person, including, for example, one nucleotide in a certain location in some people but another nucleotide in that location in others. Geometrically, the gene is a double helix formed by the nucleotides. Gene loci are often interspersed with segments of DNA that do not code for proteins; these segments are termed “junk DNA.” When junk DNA occurs within a gene, the coding portions are called exons and the noncoding (junk) portions are called introns. Junk DNA makes up 97% of the DNA in the human genome, and, despite its name, is necessary for the proper functioning of the genes.

Each chromosome of each species has a definite number and arrangement of genes. Alteration of the number or arrangement of the genes can result in mutation. When the mutation occurs in the germ cells (egg or sperm), the change can be transmitted to the next generation. Mutations that affect somatic cells can result in certain cancers.

The scientific study of inheritance is genetics. The genetic makeup of an organism with reference to its set of genetic traits is called its genotype. The interaction of the environment and the genotype produces the observable attributes of the organism, or its phenotype. The sum total of the genes contained in an organism's full set of chromosomes is termed the genome. Scientists are working toward identifying the location and function of each gene in the human genome (see Human Genome Project). The decoding of the first free-living organism (a bacterium, Hemophilus influenzae) was completed in 1995 by J. Craig Venter and Hamilton Smith.

See also gene therapy; genetic engineering.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Genetics and Genetic Engineering